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Nb3Sn Quadrupole Program Main Goals

Get an experience in the Nb3Sn technology keeping in mind 
the industrialization process

Build a 1-m-long model, 56-mm single aperture with no 
magnetic yoke

Same geometry as the LHC 
arc quadrupole magnets

Use available Nb3Sn wires 
for the model (765 A/mm2

@12T, 4.2K)

8.3 TBpeak

11870 ACurrent

211 T/mGradient

Courtesy of J. Thinel
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Final Focusing Quadrupole magnets at TESLA

• TESLA original CDR use final focusing quadrupole in a
solenoidal field (CMS type) included in the detector

• Field requirements are at the limits for NbTi technology

Courtesy of F. Kircher

• Gradient 250 T/m

• Need to use a more performant
cable:  4-years collaboration with 
Alstom to develop high-Jc wire
(2000 A/mm2 @ 12T, 4.2 K)
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Collaring process

The coil assembly will be restrained by 
laminated, 2-mm thick, austenitic steel collars 
locked by eight, full-length, tapered keys

The pre-compression obtained is needed 
both:

to compensate the thermal shrinkage 
differentials during cool-down
and to give a better redistribution of the 
stress during excitation 
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Magnetic forces
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Lorentz forces

Forces added near the 
coil head (TESLA)

Forces due to 
the gradient

700 kN/m

400 kN/m

1192 kN/m
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Mechanical Design

• A 3D contact FE model of the structure has been 
developed using COFAST3D (LMT-Cachan) which is a 
modular approach based on the CASTEM software package

• All successive steps of loading history, from collaring to 
cool-down and to excitation are simulated

• Contact with friction are taken into account in this model

• Due to the symmetries, the FE model is restricted to 1/4th 
of the quadrupole magnet cross section
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Mechanical Design

Coil

Front collar

Key

Protection sheet

Angular wedge

InsulationPole piece
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Mechanical Design

COFAST3D is based on a decomposition of the structure into
sub-structures and interfaces for an easier iterative resolution scheme 

Sub-structures Interfaces



26 October-1 November, 2003 1043rd Workshop on Super Magnets for Supercolliders

Thermal and Mechanical Properties

Preliminary tests 
on ten-stack 

samples

Materials Temp. Young's Integrated thermal
components (K) modulus shrinkage coefficient

(GPa) (mm/m)
Steel 13Rm19 300 210

Collars & Keys 4.22 210 -2.9
CuAl9 300 110

Angular wedges 4.22 110 -3.6
Insulation 300 4

4.22 4 -6.0
Nb3Sn + tape + resin 300 30
Conductor package 4.22 42 -3.9

0

20

40

60

80

100

0,0% 0,2% 0,4% 0,6% 0,8% 1,0%
Strain

St
re

ss
 (M

Pa
)

293 K
4.2 K



26 October-1 November, 2003 1143rd Workshop on Super Magnets for Supercolliders

FE Model results

Stress (MPa) σ θ σ r σ θ σ r σ θ σ r σ θ σ r

Peak stress -32 -13 -79 -38 -64 -31 -75 -34
Average over 1st layer -22 -4 -61 -12 -44 -5 -41 -12
Average over 2nd layer -18 -7 -50 -21 -35 -9 -38 -17
Average over coil -20 -6 -55 -18 -39 -7 -39 -15
Minimum over pole plane -14 -50 -27 -13

Displacement (mm) ∆ θ ∆ r ∆ θ ∆ r ∆ θ ∆ r ∆ θ ∆ r

Average over midplane -0,019 -0,056 -0,197 -0,187
Average over pole plane -0,003 -0,024 -0,005 -0,056 -0,005 -0,202 -0,009 -0,196

Peak Von Mises stress

Coils

Collars
100 960 757 725

Cool down Energizationwith bars with keys
Collaring Collaring

Average loss of pre-stress ~ 16 MPa during Cool down
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FE Model results

Azimuthal stress at 4.2 K and 11870 A

All parts of the coil 
assembly remain in 
compression at nominal 
current

Peak stress < 150 MPa
(critical level) at any 
time
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FE Model results

Azimuthal stress at 4.2 K and 11870 A

-45 MPa

-13 MPa

-73 MPa

-20 MPa



26 October-1 November, 2003 1443rd Workshop on Super Magnets for Supercolliders

FE Model results

Azimuthal stress at 4.2 K and 11870 A
with a solenoidal field of 2 T

All parts of the coil 
assembly remain in 
compression at nominal 
current

Peak stress ~ 150 MPa

The stress distribution is 
not symmetrical any 
more
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Test

Quadrupôle Nb3Sn sans fer 

NMR 530

(magnetic field 2T)

Test station at 
CEA/Saclay
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Conclusions

COFAST3D gives less numerical cost and more 
efficiency than a standard EF approach (industrial 
codes)

Sufficient pre-compression is needed
to compensate the thermal shrinkage 
differentials during cool-down
to avoid a separation at the coil/collar pole 
interface at the nominal current
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Conclusions

All parts of coils remain in compression at nominal 
current and the peak stress is below 150 MPa at 
any time

The effect of a background field induced by a 
solenoid on the magnet head must be taken into 
account to optimize the mechanical design of the
quadrupole magnet
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